タンパク質のリフォールディング:原理と実際

Protein refolding: principles and practices

津本 浩平
Kouhei TSUMOTO

東京大学大学院新領域創成科学研究科
Graduate School of Frontier Sciences, The University of Tokyo

1. はじめに
遺伝子が手に入れば、さまざまな発現系により目的の機能を持つ蛋白質を大量に調製することが可能である。しかしながら、不溶性顆粒(封入体ともよぶ)といわれる凝集体を形成し、結果として不活性型の組換え蛋白質として得られることがしばしばある。また、蛋白質の機能・構造を保持させる高次構造をより安定に制御するため、溶媒側の調整が重要である。筆者らは、最近、このようなハンドリング技術を「プロテインマニピュレーション」と総称し、フォールディング制御に関する新規でかつ汎用性の高い溶媒・共溶質システムの開発を目指して研究を進めている。以下に、フォールディング制御に関する諸技術開発研究の現状を、特に原理と実際について、最近の研究例も交えて、まとめてみたい。

2. 蛋白質のリフォールディング:原理
アンフィンゼンのドグマとしてよく知られているように、おのおのの蛋白質は、そのアミノ酸配列によって最も適切でエネルギー的に安定な立体構造を取る[1]。基本的には、疎水的な領域を分子内部に置き、親水的な領域を分子表面に置くことにより蛋白質のフォールディングが促進され、分子内部に形成される水素結合や塩橋(静電的相互作用)により構造安定化のエネルギーを獲得する[2]。
蛋白質の折り畳み過程そのものの記述に関する基礎的研究が、実験的にあるいは計算科学的に精力的に行われており、一定の成果を収めている。このようなフォールディングにより獲得される熱力学的安定性は、10 kcal/mol程度であり、Marginal Stabilityと呼ばれることもある。熱力学支配という観点では、蛋白質のフォールディングは、協同的とされる分子内非共有結合形成によるエンタルピー変化とエントロピー変化の微妙なバランスで安定化されていることになる。このような蛋白質のフォールディングを溶媒側から制御するのが、いわゆるリフォールディングと総称される操作である[3-6]。
フォールディングの制御は、正しく折りたたまれるか、凝集形成あるいは天然型と異なる折りたたみにするかの競争反応において、より正しく折りたたまれる天然型の立体構造を形成・維持させる方向(正方向)に導くことにあり、そ
の効率は、この個々の蛋白質が示す中間状態自身の性質に強く依存する。例えば凝集は、部分的に構造をとまった中間体どうしああるいは部分変性した蛋白質の分子間相互作用に起因する。

3 蛋白質のリフォールディング：実際
凝集体を活性ある分子種にリフォールディングするまでの大きな流れは、単離、可溶化、巻き戻し反応の3段階に分けられる。

a）単離
組換え蛋白質を細胞質内で大量発現させることによって得られる凝集体は、細胞の中で比較的高密度にあるため、細胞を破砕した後、比較的低速度の遠心分離により分離が可能である。残渣は界面活性剤などで除去することが可能である。一方、高発現させた際、発現蛋白質が可溶性画分と封入体画分が共存する現象が頻繁に見られる。このような場合は、先に述べた従来取り上げられる封入体とは異なり、比較的ルーズな会合体を形成していることが多く、後述のL-アルギニンによる抽出が有効となる。

b）可溶化
会合凝集体にある摂動を与えて可溶化させることになる。これには、変性剤が濃度依存的にポリペプチド鎖に結合すること、界面活性剤を用いてミセル抽出すること、温度あるいは圧力を変化凝集体に与えてポリペプチド鎖間相互作用を摂動させ、水和させる、といった手法が試みられている。
一般的には尿素や塩酸グアニジンに代表される変性作用の強い物質を高濃度で用いる場合が多い。これらはその濃度に依存して蛋白質に結合するが、十分に蛋白質に結合させて変性状態を得るためには、かなりの高濃度を必要とする。
界面活性剤系可溶化剤として、SDS、n-セチルトリメチルアンモニウム塩酸塩（CTAB）、n-ラウリルサルコシンナトリウムなどの適用が報告されている。
界面活性剤の場合は、臨界ミセル濃度（CMC）以上で抽出することが多く、実際、封入体の可溶化もミセル様結合を示す。ミセル様抽出後フォールディングしない場合は、界面活性剤の濃度をCMC以下に低下させたときに蛋白質の溶解度が著しく低下し再び凝集が起こるため、各種添加剤によって凝集形成を回避しつつ折り畳みを促す必要がある。
封入体中に存在する蛋白質の構造についての議論は、封入体形成機構も含めて、盛んに行われてきている。我々は、超高速度好熱菌由来蛋白質や一本鎖抗体、緑色蛍光蛋白質あるいはβ2-ミクログロブリンについて、形成される封入体の二次構造を分光学的に解析したところ、天然類似の分子種を多数含むことを示唆するデータを得た。そこで、この封入体からの蛋白質の可溶化に、凝集抑制剤であるL-アルギニンを用いたところ、天然類似の構造を持つ分子種を選択的に可溶化できることを見出している。これにより、封入体を変性剤を含まない緩衝液に浸し、1000-5000気圧程度の超高速度によって巻き戻し反応の3段階に分けられる。
手法は、高圧力により、蛋白質の折り畳み構造には不本意な疎水的相互作用、静電的相互作用を抑え、ミスフォールドした中間体を不安定にし、安定な天然様構造に収束させる、というものである。緩衝液の選択、多量体蛋白質への適用などに問題を残すものの、会合凝集体の可溶化、という観点では、効果的な手法の一つ、といってよいだろう。圧力摂動法においても、L-アルギニンがもっとも効果的であるらしい。

c) 巻き戻し反応

一般に、変性剤であれ界面活性剤であれ、可溶化剤を用いて可溶化した封入体から可溶化剤を除去することにより、リフォールディング反応を進める。可溶化剤の除去には、通常、希釈法か透析法が用いられる。基本的には、折り畳み反応と凝集形成反応の競争反応であり、この競争をどのように制御して天然型構造へ導くか、ということになる[15]。いかに可溶化剤を除去するか、その方法論が最も重要である。

透析法の場合は、可溶化剤の濃度を比較的穏やかに低下させることができるが、より長く折り畳み中間状態に置くことになり、結果として折り畳み中間体から凝集に向かいやすい蛋白質については、後述のような添加剤を工夫して凝集を抑えるか、希釈により可溶化剤濃度を速やかに低下させることにより巻き戻し効率を高めることができる。一方、一気に希釈してしまうと凝集してしまう場合もあり、この場合は透析法で徐々に可溶化剤を除くことで解消できる[15]。

このような巻き戻し過程における凝集を防ぐことが、活性回復において最も重要な要因であり、分子間の疎水的相互作用を防ぐために、あるいは折り畳みを促進するために、高分子化合物を添加することが多い。この効用として、①天然状態の安定化、②変性剤を除いた折り畳み中間体から凝集を抑える、希釈により可溶化剤濃度を速やかに低下させることにより巻き戻し効率を高めることができる。一方、一気に希釈してしまうと凝集してしまう場合もあり、この場合は透析法で徐々に可溶化剤を除くことで解消できる[15]。

このような巻き戻し過程における凝集を防ぐことが、活性回復において最も重要な要因であり、分子間の疎水的相互作用を防ぐために、あるいは折り畳みを促進するために、高分子化合物を添加することが多い。この効用として、①天然状態の安定化、②変性剤を除いた折り畳み中間体から凝集を抑える、希釈により可溶化剤濃度を速やかに低下させることにより巻き戻し効率を高めることができる。一方、一気に希釈してしまうと凝集してしまう場合もあり、この場合は透析法で徐々に可溶化剤を除くことで解消できる[15]。

もっとも良く使われる添加剤として、L-アルギニンがある。L-アルギニンがなぜ有効に働くか、その詳細は明らかではなかったが、最近の筆者らの研究により、カオトロピック溶媒である塩酸グアニジンと同じグアニジウム基を持っているが、変性作用はなく、巻き戻し中間体の溶解度を高めるところにあることが示されている[12,7]。グアニジウム基が蛋白質構造に示す作用とアミノ酸の持つ作用を共存させることにより、既存の溶媒・共溶媒効果では説明しきれない作用を示す[16,17]。

界面活性剤では、ラウリル・マルトシド、ラウリルサルコシンナトリウムなどを用いることで、活性回復の上昇が報告されているほか、臨界ミセル濃度以上のラウリルマルトシドの存在下での効率よい巻き戻しの成功例がある[18]。特に最近注目されてきたのが、人工シェペロン系であろう。基本概念は、変性剤により抽出した蛋白質を、界面活性剤を含む緩衝液に置き、会合凝集を抑制しながら高次構造を回復させ、次に界面活性剤をシクロデキストリンなどにより脱離回収して、高次構造形成を完了する、というものであり、生体内のフォールダーゼが示す機能を真似ている[18,19]。界面活性剤ではなくポリエチレン
グリコール、ヒドロゲルナノ粒子が化学量論的に変性蛋白質に結合して凝集を抑制し、巻き戻し効率の大幅な上昇につながるという報告もある[20]。折り畳みと凝集の間の競争反応を制御する、という意味で、分子シャペロンあるいは一連のフォールダーゼの利用も有効である。微粒子への固定化、固定化樹脂への応用も可能である[21,22]。最近報告されているゼオライトを使った方法もその汎用性が期待されるところである[23]。我々が最近開発したアミノ酸系界面活性剤を用いたリフォールディング法も界面活性剤の問題点である脱離性を大幅に改善した点で評価が高く、汎用性の高さが示されつつある[未発表]。

4. 最後に

蛋白質リフォールディングは各論的であるものの、データベースも整備されつつあるほか[24]、条件のスクリーニングシステムも開発されつつある[例えば25]。リフォールディングに関する発表論文が年々増えていること、我々の発表論文の引用数や DL数が年々増えていることは、研究者の本技術への関心がさらなる高まりを示していると思われる。

引用文献
(2) Tanford, C. Protein Sci. 6, 1358-1366 (1997)
(3) 津本浩平ら：蛋白質 核酸 酵素 46, 1238-1246 (2001)
(13) 荒川力ら、蛋白質核酸酵素、48, 2310-2317 (2003)